Architectures for high-efficiency crystalline silicon solar cells

Miro Zeman, G. Yang, P. P. Moya, G. Limodio, A. Weeber, O. Isabella

Department of Electrical Sustainable Energy Photovoltaic Materials and Devices group

ŤUDelft

Outline

- Introduction
 - Photovoltaic Materials and Devices group
 - c-Si wafer-based PV technology
- c-Si solar cells @PVMD
 - Structures for minimizing recombination
 - Performance optimization using modelling
 - Poly-c-Si(O_x) carrier-selective contacts
- Summary

Photovoltaic Materials and Devices group

PVMD leading strategy

Photovoltaics everywhere

PVMD group: People

- **3 Full professors** (Miro Zeman, Arno Smets, Arthur Weeber)
- 2 Associate professors (Rene van Swaaij, Olindo Isabella)
- **2 Technical staff** (Martijn Tijssen, Stefaan Heirman)
- **1** Secretary (Ilona van der Wenden)
- 4 PostDoc
- 14 PhD students
- 25-35 MSc diploma students
- 1 visitor/trainee
- Total: ~ 50-60 members

Arno Smets

Arthur Weeber

Olindo Isabella Martijn Tijssen

Delft University of Technology

Stefaan Heirman Ilona vd Wenden

Miro Zeman

PVMD group: Research areas

c-Si solar cells

Large-scale cost-effective electricity generation

PV systems

New applications for increased penetration of PV

TF solar cells (TF-Si, CIGS, Hybrid)

Testbed for innovation & new applications

Solar fuels

Storage for abundant solar electricity

Solar water cleaning

c-Si wafer-based PV technology

Commercial PV technologies

http://es.memegenerator.net/instance/59530172/good-news-everyone-good-news-everyone-im-still-alive-and-kicking

c-Si wafer-based solar cells

Trend in c-Si PV technology

International Technology Roadmap for Photovoltaics, Eight Edition (2016)

c-Si solar cells @PVMD Minimizing recombination

c-Si wafer-based solar cells

J _{0,contact}	$\mathrm{High} \rightarrow \mathrm{low} \ \mathrm{V_{oc}}$	$Low \to High V_{oc}$	$Low \to High \: V_{oc}$	${\rm Low} \rightarrow {\rm High} \ {\rm V_{\rm oc}}$
$\rho_{contact}$	Low → High FF	Low \rightarrow High FF	Low \rightarrow High FF	Low \rightarrow High FF
Parasitic absorption	High free Carrier	Absorption	Low absorption	Low/no absorption
Thermal stability	High	Low	High	Low

c-Si wafer-based solar cells @PVMD: Supporting films

Thermal budget	low	high	
Category	Category Metal oxides / Organics		Poly c-Si alloys
Electron selective	ctive TiO_2 , LiF _x $n^+ a/p$ Cs ₂ CO ₃ , PCBM $n^+ a/p$		n⁺ poly-c-Si n⁺ poly-c-SiO _x n⁺ poly-c-SiC _x
Hole selective	MoO _x , WO _x , VO _x P3HT, PEDOT:PSS	p⁺ a/µc-Si(O _x) :H p⁺ a/µc-Si(C _x) :H	p⁺ poly-c-Si p⁺ poly-c-SiO _x p⁺ poly-c-SiC _x
Interface layer	a-Si:H, a-SiC:H, a-SiO:H; high band-gap dielectrics (SiO ₂ , HfO _x , AlO _x ,)		

PVMD.TUDelft.nl	MoO _x , TiO ₂	HTJ	doped poly-c-Si doped poly-c-SiO _x
-----------------	-------------------------------------	-----	--

c-Si wafer-based solar cells @PVMD

FBC

c-Si solar cells @PVMD Modelling

Device structure + input parameters

SYNOPSYS

Model validation

SYNOPSYS

Synopsys°

Performance analysis

Performance optimization

SYNOPSYS[®]

Homo-junction optimized design n=23%

Passivated poly-c-Si optimized design^[2] n=27.1% Silicon Hetero-junction optimized design^[3] η=27.1%

P. Procel, et al., PiP 10.1002/pip.2874 (2017)
 P. Procel, presented at SiliconPV (2017)
 P. Procel, presented at EUPVSEC (2017)

c-Si solar cells @PVMD High temperature poly-c-Si(O_x) carrierselective contacts

Objectives for IBC poly-c-Si cell:

- 1. Quench back-side recombination losses
 - → Deploying poly-c-Si CSCs
- 2. Quench front-side recombination losses
 - \rightarrow FSF passivation
- 3. Quench back-side parasitic absorption
 - \rightarrow poly-SiO_x alloys

Development:

[5] G. Yang, et al., APL, 118, (2016) 033903.

[6] G. Yang, et al. SOMAT, 158 (2016) 84.

[7] M. Rienacker, et al., energy procedia, 92 (2016) 412.

[8] F. Haase, et al. PVSEC-26, (2016) Singapore.

1. E. Yablonovitch, APL, 47, (1985) 1211.

[2] F. Feldmann, et al., SOLMAT, 120, (2014) 270.
[3] S. W, Glunz, et al. EUPVSEC-31, (2016) Hamburg
[4] A. Richter, et al. SOMAT, (2017)

Tunneling oxide/poly-c-Si @TUDelft

c-Si surface field Tunneling oxide poly-c-Si(O_x) emitter Passivation layer poly-c-Si(O_x) surface field Metal

Ion-implanted poly-c-Si passivated carrier-selective contacts (poly-Si) @TUDelft

G. Yang, et al., Appl. Phys. Lett. 108, 033903 (2016)

n-type poly-c-Si			ĺ	ĺ	ĺ
n-FZ, <100> 1~5 Ωcm	+ SiN _x :H capping	τ _{eff} [ms]	R_{sh} [Ω/□]	J₀ [fA/cm²]	iV _{oc} [mV]
NAOS - SiO ₂ n-type poly-c-Si		18	85	4.5	735
***************************************	Annealing: 950°C, 5 min				
p-type poly-c-Si NAOS - SiO ₂ n-FZ, <100> 1~5 Ωcm	+ SiN _x :H capping	τ _{eff} [ms]	R _{sh} [Ω/□]	J₀ [fA/cm²]	iV_{oc} [mV]
NAOS - SiO ₂ p-type poly-c-Si		4.5	150	11	716

G. Yang, et al., Appl. Phys. Lett. 108, 033903 (2016)

Tunneling oxide/poly-c-Si

 c-Si surface field
 Tunneling oxide

 IIIIIIIIIII poly-c-Si(Ox) emitter
 Passivation layer

 IIIIIIIIIIII poly-c-Si(Ox) surface field
 Metal

G. Limodio, G. Yang, H. Ge, O. Isabella, M. Zeman, SiliconPV, (2017), Freiburg.

Tunneling oxide/poly-c-Si

PeRFeCT (Passivated Rear and Front ConTacts) solar cell

PeRFeCT (Passivated Rear and Front ConTacts) solar cell

PeRFeCT (Passivated Rear and Front ConTacts) solar cell

Interdigitated Back Contact (IBC) c-Si solar cell

Self-aligned process developed at TU Delft

Summary

c-Si wafer-based solar cells

- Architectures for minimizing recombination
- Thermal budget
- Opto-electrical modeling important tool for optimization
- High T poly-c-Si selective-carrier contact cells

Good passivation

CSC	doping	J ₀ (fA/cm²)	iV _{oc} (mV)	ρ _{C,TLM} (Ω·cm²)
poly-SiO _x	n-type	3.0	740	0.7
	p-type	23.0	700	0.5
poly-Si	n-type	4.5	735	0.9
	p-type	11.0	711	0.3

Acknowldgements

Thank you for your attention!

