

Highly efficient hybrid perovskite solar cells by interface engineering

Maria Antonietta Loi

Photophysics & OptoElectronics Zernike Institute for Advanced Materials University of Groningen The Netherlands

M.A.Loi@rug.nl

Why Hybrid perovskites? ISE/ Soitec (LM, 364X) 46.0% 🔲 Spire (LM, 942x) Spectrolab | Fraunhofer ISE Semiconductor NREL • 44.4% 💙 (MM, 299x) (MM, 454x) (MM, 406x ۰ NREL Boeing-Spectrolab Boeing-Spectrolab Soited (MM, 240x) (4-J, 327x) (MM, 179x) (4-J, 319x) Boeing-Solar Spectrolab (5-J) Junction Si Single Crystal 25.3% 38.8% **□** 37.9% ▼ (LM, 418x) Sharp (IMM) (IMM) Spectrolab Boeing-(IMM) Sharp (IMM) Spectrolab Spectrolab FhG-ISE 34.2% NREL/ NREL (467x) A NREL 32.6% Hybrid Perovskites > 22.1% Altá Devices NREL IES-UPM (1026x) FhG NREI NREL LG Electronics Alta Dev Alta Devices Padboud U. wer (large-area) 29.3% ▲ 28.8% ▽ FhG-ISE Ans ▲LG Electronics SunPower (96x) (92x) 27.6% 27.5% Kaneka Λ $\Delta \nabla$ FhG-15 26.6% Radboud U FhG-ISE Sc JNSN UNSW 25.3% Solexel UNSW ZSW Panas UNSW Sanyo Sanyo 5L (14.7x) 23.3% 0 First Solar ZSW FhG-ISE Sanyo 22.6% KRICT/ UNIST Fraunhofer-ISE UNSW Sanvo NREL Sanyo 22.1% UNSW / EMPA (Flex poly 7SW 22.1% (14x)Eurosolare Georgia 21.9% Georgia Georgia Tech л First Solar 21.2% 🗸 NREL Tech NREL NREL Tech EPFL NREL NREL NREL NREL Solibro U. Stuttgart Fraunhofer ISE Trina Solar NREL Solar Frontier Solar GE Global Research **GE** Global Research NREL Mitsubishi Matsushita AIST NREL AIST United Solar Chem. 14.0% 🔘 NREL Euro-CIS 13.4% \diamond (aSi/ncSi/ncSi) NREL United Solar United Solar Sharp < IBM Hong Kong 12.6% ٠ 11.9% O 11.5% ● Boein Sharp JST J.Toronto UCLA-Sumitomo IBM IBN iergy 10.6% 🛆 Heliatek Chem. EPFI Konarka, U.Toronto O nited Solar Solarmer MIT U. Toronto О NREL / Konarka Konarka EPFL 0 tomo U. Linz Groningen PFL U. Toronto 04-14-2017) Plextronics 🔏 Heliatel (PbS-QD) Siemens 0 U. Dresden U. Linz (NREL U. Linz (ZnO/PbS-QD) Rev 1995 2000 2005 2010 2015 2020

What are HP?

Perovskites adopt the chemical formula ABX₃

A and B are cations of different sizes

X is an anion (oxygen and halogens)

Hybrid Perovskites

- > A is small organic cation
- > Most popular hybrid perovskites use

A-cations: $CH_3NH_3^+$ (MA) or $HC(NH_2)_2^+$ (FA)

X-anion (halogens): Cl⁻, Br⁻, I⁻

/ university of groningen

 zernike institute for advanced materials M. A. Loi & J. C. Hummelen, News & Views, Nature Materials, 12, 1087 (2013)

Important features - pros

 Device efficiencies have increased rapidly from 3.8% in 2009 to more than 20%.

Material Properties

- Solution processable
- > Tunable bandgap from Vis to NIR;
- > High optical absorption coefficient;
- > Long carrier diffusion length;

Important features - cons

Drawbacks

- Materials and/or device instability;
- > Hysteresis in current-voltage (JV) curves;
- > Toxicity of Pb

Some solutions

- > Chemical management of perovskite compositions;
- > Invention of various deposition techniques;
- > Search for efficient HEM and EEM
- > Non-Pb perovskites

Solar cells interfaces

Varying the nature of the interface

Variation of the device parameters with light soaking time

Light intensity dependent J_{SC} and V_{OC}

Bimolecular recombination is not involved in the light soaking

Suppressed
 trap assisted
 recombination
 with light soaking

□ Lower trap assisted recombination in device using PTEG-1 as EEL

Steady state and time resolved PL

Summary

- The surface electron traps dominate the light soaking effect in HPSCs.
- Severe light soaking effect in HPSCs using PCBM as EEL due to the trap-assisted recombination at HP/PCBM interface.
- Negligible light soaking effect in HPSCs using the high dielectric constant fullerene PTEG-1.
- The reduced light soaking is due to suppressed trap-assisted recombination at HP/PTEG-1 interface.

Further device engineering

Further device engineering

university of groningen

 zernike institute for advanced materials S. Adjokaste, ...MAL, in preparation

What about Sn?

Sn Perovskites

- > Rather low efficiencies for solar cells (6%)
- Huge problem of self doping fast oxidation of Sn²⁺ into more stable Sn⁴⁺
 - Introduction of (SnF2) as a reducing agent
- Only with mixture of Pb and Sn recently achieved good
 performances

Introducing PEAI into FASnI₃

 $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$

3D

0.08 M 2D

0.12 M 2D

0.16 M 2D

/ university of
groningen

 zernike institute for advanced materials

Shao...MAL, Adv. Energy Mater. (2017)

Improving efficiency and reproducibility

Large current

zernike institute for advanced materials

Transport

Elimination of the grain boundaries

Preferential orientation of the FASnI₃ crystals

De-doping of the FASnI₃ film and reduced background carrier density

9% tin perovskite solar cells with improved stability

 zernike institute for advanced materials

Acknowledgments

P-OE@RUG

Hong Hua Fang (post Doc) Shuyan Shao (post Doc) Sampson Adjokaste (PhD student) Mustapha Abdu-Aguye (PhD student) Bart Groeneveld (PhD student) Herman Duim (PhD student)

erc Hyspod

Graeme Blake Giuseppe Portale

RUG

Université Européenne de Bretagne, France Jacky Even

ETH Zurich Maksym Kovalenko

Reduction of traps

zernike institute for advanced materials

Shao...MAL, Adv. Energy Mater. (2017)

Without annealing

 zernike institute for advanced materials

Stability test under 1 sun in ambient conditions

Increased structural stability

